This is ACA \# 30. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. Click here to show a set of five ACA30 student responses, randomly selected from all of the student responses thus far, in a new window.

John, here are your responses to the ACA and the Expert's response.

1. In Section 4.6 in Chapter 4 on page 200 are a set of rules for assigning oxidation states/numbers. An expanded set of rules are;
A. Any atom in a pure element or molecule such as $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{P}_{4}$, or Zn has an oxidation number of zero.
B. For ions consisting of a single atom, the oxidation number is equal to the charge on the ion; $\mathbf{C l}^{-}$has an oxidation number of $\mathbf{- 1}$ and $\mathbf{Z n}^{\mathbf{2 +}}$ has an oxidation number of $\mathbf{+ 2}$.
C. Fluorine is always -1.
D. Chlorine, bromine and iodine are -1 except in compounds with fluorine or oxygen (both of which have higher electronegativities).
E. The oxidation number of hydrogen is +1 except when bound to a metal (hydrogen is more electronegative).
F. The oxidation number of oxygen is usually -2 (except in $\mathbf{H}_{2} \mathrm{O}_{2}$ when oxygen has an oxidation number of $\mathbf{- 1}$)..
G. The sum of the oxidation numbers in a neutral compound must be zero.
H. The sum of the oxidation numbers for a polyatomic ion must equal the ion charge.

Assign the oxidation numbers to the following elements in the following compounds:
a) $\mathrm{Al}_{2} \mathrm{O}_{3}$

Element Oxidation number

$$
\begin{array}{rr}
+6 & 14 \% \\
0 & 7 \%
\end{array}
$$

3+
$+3$

0
2- 86%
-2
b) $\mathrm{PO}_{4}{ }^{-3}$

Element Oxidation number

0

$$
\begin{array}{llll}
5+ & 86 \% & 3 & 3 \% \\
+5 & & 07 \% & \\
2- & 57 \% & -8 & 2 \% \\
2-17 \% & 7 \%
\end{array}
$$

c) $\mathbf{M g}\left(\mathrm{NO}_{3}\right)_{2}$

Element Oxidation number

Mg
$2+\quad 86 \%$
+2
5+
$+5$

2-
0

$$
57 \%
$$

-2
d) $\mathbf{N H}_{4}{ }^{+}$

Element Oxidation number

N
3-

-3

1+ 86%
H
+1
e) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Element Oxidation number

Na

+1

2-

0
-2
6+ 57%
S
+6
2. The overall reaction

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq})--->\mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

can be broken into two half-reactions that reflect which element lost electrons and which element gained electrons. If we divide the overall reaction into two halfreactions based on the elements we would have first half-reaction : $\mathbf{Z n}(s)--->\mathbf{Z n}^{\mathbf{2 +}}(\mathbf{a q})$
second half-reaction : $\mathrm{Cu}^{2+}(\mathrm{aq}) \cdots \mathrm{Cu}(\mathrm{s})$
Notice that the number of elements is balanced for each of these half-reactions, but the charge is not. For the first half-reaction the charge is 0 (zero) on the reactants side and +2 on the products side. To balance the charge in the half-reaction we must add two electrons ($2 \mathrm{e}^{-}$to the right side of the half-reaction). When we look at the second halfreaction it is clear two electrons must be added to the left side of the half-reaction.
first half-reaction : $\mathbf{Z n}(s) \cdots \mathbf{Z n}^{\mathbf{2 +}}(\mathrm{aq})+2 \mathrm{e}^{-}$
second half-reaction : $\mathbf{2 e}^{-}+\mathrm{Cu}^{\mathbf{2 +}}(\mathrm{aq}) \cdots \mathrm{Cu}(\mathrm{s})$
Check out that when we add the first and second half-reactions together the electrons cancel and the overall reaction is the same as we had when we started. Being able to recognize the half-reactions given the overall reaction is important in Chapter 19. Lets try a few examples; NOTE: a is easy, b is a little more difficult, c is disgusting!
a) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})-->\mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
first half-reaction (magnesium) $\mathbf{M g}(s)-->\operatorname{Mg}^{\wedge} 2+(a q)+2 \mathrm{e}^{\wedge}-$

$\operatorname{Mg}(\mathrm{s})---->\operatorname{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
second half-reaction $2 \mathrm{e}^{\wedge}-+2 \mathrm{H}^{\wedge}+-->\mathbf{H} 2(\mathrm{~g}) 72$

$$
2 \mathrm{H}^{t} \rightarrow \mathrm{H}_{2} 21 \%
$$

$$
2 \mathrm{e}^{-}+2 \mathrm{H}^{+}(\mathrm{aq})---->\mathrm{H}_{2}(\mathrm{~g})
$$

b) $\mathbf{3} \mathrm{H}_{2} \mathrm{~S}+\mathbf{2} \mathrm{HNO}_{3} \rightarrow \mathbf{3 S}+\mathbf{2 N O}+\mathbf{4} \mathbf{H}_{2} \mathrm{O}$

$$
\text { first half-reaction (sulfur) } 3 \mathrm{H} 2 \mathrm{~S}(\mathrm{~g})-->3 \mathrm{~S}(\mathrm{~s})+6 \mathrm{H}^{\wedge}+(\mathrm{aq})+6 \mathrm{e}^{\wedge}-36 \%
$$

$$
3 \mathrm{H}_{2} \mathrm{~S}---->3 \mathrm{~S}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}
$$

$$
\text { second half-reaction } 6 \mathrm{e}^{\wedge}-+6 \mathrm{H}^{\wedge}+(\mathrm{aq})+2 \mathrm{HNO}(\mathrm{aq})-->2 \mathrm{NO}(\mathrm{~g})+4 \mathrm{H} 2 \mathrm{O}(\mathrm{l}) 36 \%
$$

$$
6 \mathrm{e}^{-}+2 \mathrm{HNO}_{3}+6 \mathrm{H}^{+}---->2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

c) $\mathrm{K}_{2} \mathrm{~S}_{5}(s)+2 \mathrm{HCl}(g)-->\mathrm{H}_{2} \mathrm{~S}(g)+4 \mathrm{~S}(s)+2 \mathrm{KCl}(s)$

$$
\begin{aligned}
& \text { first half-reaction } 8 \mathrm{e}^{\wedge}-+8 \mathrm{H}^{\wedge}+(\mathrm{aq})+\mathrm{K} 2 \mathrm{~S} 5(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{~g})-->5 \mathrm{H} 2 \mathrm{~S}(\mathrm{~g})+2 / \% \\
& 2 \mathrm{KCl}(\mathrm{~s})
\end{aligned}
$$

$$
\mathrm{K}_{2} \mathrm{~S}_{5}(s)+2 \mathrm{HCl}(g)--->5 \mathrm{~S}(s)+2 \mathrm{KCl}(s)+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}
$$

$$
\text { second half-reaction } \mathrm{K} 2 \mathrm{S5}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{~g})-->5 \mathrm{~S}(\mathrm{~s})+2 \mathrm{KCl}(\mathrm{~s})+2 \mathrm{H}^{\wedge}+(\mathrm{aq})+
$$

$$
2 \mathrm{e}^{\wedge}-
$$

$$
8 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{K}_{2} \mathrm{~S}_{5}(s)+2 \mathrm{HCl}(g)--->5 \mathrm{H}_{2} \mathrm{~S}(g)+2 \mathrm{KCl}(s)
$$

3. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
4. If there is one question you would like to have answered in lecture, what would that question be?
nothing
